2025-09-03 18:57:23
本文與 研華科技 合作,泛科學企劃執行
我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。
但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?
這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。
這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。
這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。
這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?
那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。
那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。
而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。
這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。
所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?
聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?
想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。
現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。
NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。
但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。
這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。
如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。
而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如
這些應用,代表著 NVIDIA Jetson Orin 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。
Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?
面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。
NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:
這就是關鍵! 過去以NVIDIA Jetson Orin作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。
其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。
好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?
這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?
答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。
從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。
這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。
但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。
這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。
但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?
這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。
答案,就在虛擬世界之中。
NVIDIA Isaac Sim等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。
這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。
我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。
所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。
我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。
專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。
這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。
所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?
這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」
研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4
2025-09-03 09:39:18
在微軟設於荷蘭的資料中心裡,電腦發出整齊劃一的嗡鳴。在這片海埔新生地上,成排機架上的伺服器吐出陣陣暖風,伴隨著奇特的嗡嗡聲迴盪不絕。走近細聽時,音調越發清晰,完美的高音 B。
「你聽到的是 GPU 的聲音,」維修人員解釋:「那是用來執行AI軟體的圖形處理晶片。」在隔壁同樣擺滿伺服器的機房裡,這裡的音調降到了低音 E。放眼望去,整個空間充斥著電腦設備發出的嗡嗡聲。
光是這座資料中心,微軟每月就要汰換三千台伺服器,以全新設備替換舊機。這樣做代價不菲,卻是必要:這些伺服器一旦停擺,雲端服務就會中斷。這項服務需要使用者的信賴,使用者必須確信這個由超大型資料中心所組成的全球網絡能夠全年無休地穩定運作。它們絕不許出任何差錯。
雖然名為「雲端」,但它實際上比你想像的更貼近地面。很少人會想到,這些其實都藏在荷蘭一片平凡無奇的海埔新生地上。長久以來,沒有人需要思考這些服務背後的真實面貌,一切都像往常一樣運轉,直到一個肉眼看不見的病毒讓全球停擺。
2020 年初,新冠疫情席捲全球。無論是否封城,都擋不住病毒的蔓延。公共生活陷入停滯,數位世界仍持續運轉。突然間,所有人都在家工作,都想同時開視訊會議,這導致微軟的雲端服務不時出現故障。Zoom、Teams 等原本鮮為人知的應用程式,因使用量暴增而備受關注。全球產生的資料量急速倍增,迫使微軟設在荷蘭的資料中心不得不動用卡車,搬運數千台額外的伺服器。這是維持 Teams 會議運作的唯一方法。隨著額外的算力、記憶體、GPU 的加入,機房中那個高音 B的聲調也越發響亮。
晶片需求暴增,引發一連串連鎖效應。不只資料中心的伺服器受到影響,筆記型電腦、螢幕、遊戲主機、Wi-Fi 路由器也被搶購一空,其他需要處理器、感測器、記憶體晶片的產業也出現短缺,汽車業受創最重。2020 年初,汽車製造商預期疫情會衝擊買車意願,紛紛縮減晶片訂單,後來證明這是個重大錯誤。
由於疫情已讓晶圓廠的產能滿載,汽車製造商的新訂單只能排在最後。晶片短缺的危機開始浮現。到了 2020 年底,數位儀表板、駕駛輔助系統、安全氣囊感測器的晶片都供不應求,生產線陸續停擺。想買新車要等一年以上,不然就只能退而求其次,選擇配備手搖窗戶而非電動車窗的車款。就像回到過去一樣,只能用人力來取代晶片。
在荷蘭,ASML接到一連串焦急的電話。對方傳達的訊息再清楚不過了:台積電非常不滿。
疫情爆發後,台積電面臨一項棘手難題:台積電肩負著供應全球半數處理器的重責;在最頂級的高階晶片方面,更須確保全球九成的供貨量。在這個供應短缺期,各國都意識到他們對台灣晶片生產的依賴,這種依賴關係導致國際局勢漸趨緊張。
台積電背負著來自全球的壓力,各國憤怒的政要都迫切希望本國汽車產業恢復運轉:德國總理梅克爾致電要求加快對德國車廠的晶片供應,美國總統拜登也要求台積電優先供應美國車廠。而台積電則是向 ASML 施壓,要求 ASML 協助擴充產能,而且要快!此時全世界才真正意識到,他們有多麼依賴這些機台所生產的晶片。每個人都需要這些機台持續不斷地運轉。
長久以來,ASML 只需要因應自然法則。但自 2018 年起,ASML 發現它必須面對一個新挑戰:變幻莫測的地緣政治角力。中國正緊追著西方世界的腳步。美國為了在技術上牽制中國,試圖阻止中國使用 ASML 的設備來建立獨立的晶片生產線。美國認為這攸關國家安全:在他們看來,中國生產的每顆晶片都可能用於軍事目的。面對這個生存威脅,美國決心在 AI 和精密武器領域維持領先地位。這使得半導體業別無選擇,只能配合這個政策。
雖然這項策略最初是由川普政府提出,但最終是拜登總統下令加強出口管制,以凍結中國的技術發展。然而,美國也明白,光這樣做還不夠。他們需要盟友也配合實施出口限制,尤其是荷蘭——也就是 ASML 的配合。
雖然 ASML 是在全球化的時代成長,但那個時代早已落幕。如今全球地緣政治的裂痕清晰可見,ASML 不得不審慎思考自己的立場。面對這種策略性的調整,沒有標準答案可循,一切抉擇都得自行承擔。
本文摘自《造光者:晶片戰爭中最神秘的關鍵企業,微影巨人ASML制霸未來科技賽局的崛起之路》,2025 年 09 月,天下雜誌出版,未經同意請勿轉載。
2025-09-02 14:03:02
本文轉載自顯微觀點
在古典科學觀念中,材料在物理學上的內含性質(intensive property)就如同它們的指紋,足以辨識材料成分的身分、本質,不會因材料大小、形狀而改變。但是 21 世紀的科學家卻發現,將材料剝離分解到無法更薄、僅剩 1 層原子厚的二維平面,竟會出現超導體、超流體、活躍強健的激子等奇特現象,與原本的物理性質大異其趣。
這種新興的「二維材料(2-dimensional materials)」物理不僅召喚著科學家的濃厚好奇心,也具備科技創新的潛力。要探究二維材料這些超越既有材料科學認知的神祕特性,就要從量子世界中的電子行為「能帶理論」談起。
能帶理論(Energy Band Theory)是以高低不同的「能量帶」空間觀念,對晶體中的電子行為進行解讀:電子平時處於能量較低的價電子帶(亦稱價帶,covalence band)。此能帶的電子受到原子核束縛,不能自由運動,且許多電子塞滿其中,沒有流動空間,因此價帶中的電子不能導電。
若從外來光子獲得足夠能量,電子會躍升到傳導帶(亦稱導帶, conduction band),在此空間充沛的能帶,電子能夠自由移動,在外部電場的作用下形成電流、展現出導電性。
導帶、價帶之間的能量帶稱為「能隙(band gap)」,是電子無法停留的能帶位階,不同種類晶體的能隙大小不同,電子由價帶升往導帶的難易度因此相異。若價帶電子得到的外來能量並未超過能隙大小,就沒辦法升往導帶。
金屬晶體具有極小的能隙,某些金屬的導帶與價帶甚至重疊,因此電子可以輕易進入導帶,展現出良好導電性。而絕緣體的能隙極大,電子難以躍升到導帶,因此困在價帶,無法導電。半導體介於金屬與絕緣體之間,在適當的能量激發或能隙調整下,就能展現導電性,人類得以調控電訊號。
備受眾望的石墨烯,終究因為其沒有電子能隙、導電性過佳,難以成為實用的半導體材料。但是另一種二維材料:過渡金屬二硫族化物(Transition Metal Dichalcogenides, TMD)卻展現出了可調控的導電性,讓半導體產業界的希望之火繼續燃燒,也為物理學界展開寬闊的未知境地。
TMD二維材料的大型原子之間具有原子核、電子的相互作用,產生一般材料罕見的超導特性與巨磁阻,成為具備高潛力的半導體材料。從上方觀察,TMD如石墨烯一般形成六角形晶格平面,但從側面看,會發現上下兩層硫族原子將金屬原子夾在中央,猶如一個原子三明治。
在TMD的原子三明治菜單上,二碲化鎢(WTe2)、二硫化鉬(MoS2)、二硫化鎢(WS2)、二硒化鉬(MoSe2)、二硒化鎢(WSe2)等,都是極具潛力的二維層狀半導體材料。
這些潛力TMD與石墨烯相似的不僅是晶格排列模式,同時它們也具有強力的層內共價鍵與薄弱的層間凡德瓦力,這種力量分配讓它們更容易剝離成單層結構。相較之下,其他材料(例如純金屬)通常具備延伸共價鍵或金屬鍵,材料塊不容易層層剝落、難以形成單層二維材料。
TMD 單層分子平面成形之後,電子能帶結構會從原本的間接能隙轉變為直接能隙,使互相吸引的導帶電子與價帶電洞(即為激子)結合時直接放出光子。在間接能隙結構中,激子結合的能量會轉換為熱能,不利於能量或訊號傳輸。單層 TMD 的直接能隙則讓它們在光照之下,可以透過電子活動而激發出螢光,成為光致發光(photoluminescene)的良好材料。
矽或鍺等等電子元件常見材料,在二維狀態下依然保持間接能隙,能量會化為熱能,不會轉換為光。因此 TMD 二維材料取代傳統材料,成為產業界創新光電材料的希望所在。
透過顯微操作,科學家更利用 TMD 的層間凡德瓦力,將不同的 TMD 二維材料疊合、錯位,形成異質結構(Heterostructures),透過材料堆疊位置調整電子能帶,產生如超導體或莫特絕緣體等特殊物理現象。就像在玩奈米尺度的樂高積木,只是成果比樂高更令人驚奇。電子在異質結構中產生的新奇行動模式,有機會應用在量子計算、奈米元件等領域。
此外,TMD 二維材料本質上比石墨烯更加特殊之處,是其中的金屬原子質量較重,導致更強的電子自旋-軌道耦合(Spin-Orbit Coupling, SOC)效應,於是 TMD 在 2 個電子能谷(Energy Valleys)中表現不同的電子特性,使科學家能夠操縱電子的「谷自由度」來進行訊號傳輸(類似1與0的二進位訊號)。
透過不同於傳統半導體的超導、絕緣、谷電子學性質,TMD 二維材料可以提供極快速、低耗能的訊號調控與傳導,在小於奈米的空間中,也能保持訊號精確。此外,由於激子的活動現象,二維材料也更有機會實現利用光子傳輸訊號的計算機元件。
提及激子的研究方法,台灣大學人工低維量子材料物理實驗室(Quantum Physics of Artificial Low-dimensional Materials Lab, 又稱 QPALM 實驗室)主持人陳劭宇解釋,雖然量子力學被多數人視為難以捉摸的神秘領域,但製作二維材料的方法卻可以非常貼近日常生活。
陳劭宇說,「我們實驗室最常用來製作二維材料的工具,你一定也用過,就是有名的 Scotch Tape 法。」
Scotch Tape 法又稱機械剝離法(exfoliation):使用膠帶黏住小塊材料,材塊對面再以膠帶黏貼,接著將兩側膠帶撕開,就會將材料一分為二。如此反覆黏撕,最後出現極為單薄的單層二維材料。這也是當年海姆(A. Geim)與諾沃蕭洛夫(S. Novoselov)將石墨塊製作成單層石墨烯、邁向 2010 年諾貝爾物理學獎的方法。陳劭宇團隊則更進一步,對各種材料塊採用不同的膠帶,以得到最佳的剝離效果。
若你在生活百貨結帳時遇見購買各式膠帶的顧客,除了封箱收納,他也可能是位準備動手研究量子物理的科學家。
得到單層材料之後,科學家透過顯微操作將其放上六方氮硼(h-BN)等基材,再加熱使膠帶與二維材料分離。材料與操作方法相當平易近人,卻可以結合顯微觀察、拉曼光譜等方法從中測得奇妙的量子物理現象。
陳劭宇回憶道,「這是可以自己『在家動手做』的物理研究,在 COVID-19 疫情嚴峻隔離的時候,我們輪班工作、不能持續待在實驗室。只好自己組裝一台顯微鏡,用不同的光線觀察二維材料,竟因此發現某些材料在特定顏色光照射下,才有辦法清晰觀測。」
這個發現雖然尚未發表,但也成為他的實驗秘技之一。而當時「在家動手做量子物理」的研究過程也錄製成影片,作為疫情期間透過網路推廣科學的素材。
在二維材料研究中,材料層數是最重要的數字,而光學顯微鏡就在材料層被剝離後,擔任檢驗的工具。陳劭宇說,不同的材料有各自適合的顯微觀察方式,從常見的穿透光、反射到微分干涉(DIC)顯微術都是他會採用的方法。
確認材料層數之後,便能以光、電與材料互動,或是疊合異質材料,並以顯微鏡或拉曼光譜儀觀測,針對觀測結果進行運算,實驗人員可以得知二維材料的激子束縛能、能量轉換、導電性等物理特質。
例如,因為二維材料的層間空間極小,因此受到激發的電子可能移動到相鄰的異質材料層,而其相應的電洞還停留在原本材料層,電子與電洞在不同材料層互相吸引,形成奇妙的跨層激子(interlayer excitons),產生新穎的電學、光學、磁學現象。
陳邵宇舉例,暗激子的超流體狀態就是其中一種神奇現象。他說,「超導體的節能來自於傳輸電荷時不耗能,而超流體則是粒子移動時不耗能。若能控制超流體狀態的激子,我們就能得到超級節能的元件。」
陳劭宇闡明,超流激子在理論上已被預測,但還沒有人在實驗中成功操縱這項性質。他表示,控制超流激子是物理學界共有的、也是他個人追求的遠大目標之一。二維材料中包含超流體、高效率光電轉換等特質,為未來科技開創了廣大的可能。在陳劭宇等物理學家的持續投入下,我們有機會親眼見到他們利用輕於鴻毛的二維材料,實現宏大的未來科技。
(更多深入淺出的二維材料知識,請看降維展開新宇宙:陳劭宇和激子物理)
2025-08-30 18:13:35
本文轉載自宜特小學堂〈USB Type-C 將強制一統天下 如何確保產品符合歐盟最新規範?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!
USB Type-C,正快速從「傳輸孔」變身為全球通用的供電標準。從手機、筆電到咖啡加熱器,越來越多裝置全面轉向 Type-C 接口。歐盟雖已在 2024 年底立法強制 12 類電子產品統一使用 Type-C,但事實上 Apple、Samsung、Google、Huawei 等國際大廠早已領先導入。如今 Type-C 不只是趨勢,而是世界共識。那你的產品,準備好通過 USB-IF 最新的 IEC 62680 規範了嗎?
曾經是資料傳輸的標配介面,USB Type-C 如今正搖身一變,成為全球電子設備的通用供電標準。根據 Mordor Intelligence 預測,USB Type-C 市場規模將從 2025 年突破 400 億美元,2030 年更將成長至近 820 億美元,應用場景涵蓋手機、筆電、耳機、電動工具,甚至咖啡加熱器與家用電器。
這波趨勢早已不限於歐盟。雖然歐盟已自 2024 年底強制 12 類電子產品統一採用 USB Type-C 充電介面,並要求符合 IEC 62680 系列規範,但全球主流品牌如 Apple、Samsung、Google、Huawei 等早已率先導入 Type-C,顯示這已是業界自發採用的進行式。連 USB-IF(USB 開發協會)也坦言,原本沒預期 Type-C 會成為世界級的供電標準,但市場需求推動下,這場革命已無法擋。
對消費者來說,改用USB Type-C後出門不再需要帶一堆充電器,一條線即可搞定所有裝置:手機、平板、耳機、筆電、遊戲機共用一種接頭高度相容,插頭還可正反插,使用更簡單。亦無需擔心電壓差異,USB Type-C還支援 PD 快充,最高功率可達 240W(USB PD 3.2)。
對製造商來說:Type-C 標準連接器「幾乎免費」,不再需要客製化開模生產商品接口,只要從市場遍布的Type C供應商大規模採購,成本大幅降低之外,裝置統一設計,免去針對不同市場開發多種充電規格,國際規範也可以一次搞定。
對地球環境來說:統一使用USB Type-C且廠商「不附充電器」的銷售模式,不但可減少電子垃圾,亦可減少重複購買與浪費。
為協助廠商快速因應歐盟與各地市場需求,USB-IF (USB Implementers Forum,簡稱USB-IF) 協會於 2024 年 8 月正式推出「USB-IF Conformity to IEC 62680」測試計畫,協助廠商確保裝置符合:
根據這一指令,所有相關設備需配備符合 IEC 62680-1-3:2021 (USB Type-C® Cable and Connector Specification) 標準的 Type-C 電線進行充電。此外,對於充電電壓超過5伏特、電流超過3安培或功率超過15瓦的設備,則須符合 IEC 62680-1-2:2021 (USB Power Delivery specification) 標準,以確保這些設備能夠快速充電,並能在各種充電環境中保持高效運行。
本篇文章同步收錄由 iST 宜特科技訊號實驗室執行的真實驗證案例,透過高速訊號模擬與電性測試,協助客戶符合最新 USB-IF / IEC 標準。從設計建議、測試平台建置到初期 debug 與驗證服務,幫助您從開發初期就為全球市場做好準備。
歐盟Directive (EU) 2022/2380 指令的宣告,意在補充 RED ( Radio Equipment Directive) 2014/53/EU 的 3.3(a) 條款中針對通用充電接口的具體要求,確保13類可充電無線設備統一採用 USB Type-C 充電接口。宜特訊號測試實驗室為您解讀以下符合 Conformity to IEC 62680 規範的三大測試項目。
(一)USB Type-C 功能測試規範(USB Type-C Functional Test Specification):
此測試項目主要是檢查 USB Type-C 裝置是否符合 USB Type-C 規範要求。測試內容涵蓋多種不同的 USB Type-C 操作模式,包括:
這些測試的目標是確保 USB Type-C 裝置能在不同設備間正確運作,並且符合電氣和計時要求,以建立穩定的功能連接。
(二)USB 電力傳送合規性測試規範(Power Delivery Compliance Test Specification:
這部分的測試是確保 USB Type-C 裝置符合 USB Power Delivery 3.1 的規範要求,如果產品支援 Power Delivery,就需要執行這項測試,具體包括:
這些測試旨在確保 USB Type-C 裝置在提供電力時,能夠滿足規範要求,從而確保設備在實際使用中的安全性和穩定性。
(三)USB 電源測試規範(Source Power Test Specification):
這些測試是用來驗證 USB Type-C 接口作為電源供應端時的各項功能。如果產品具備Source Power能力,就需要執行以下測試,測試內容包括:
這些測試的目的是確保 USB Type-C 電源在實際使用中能夠安全、穩定、可靠地提供所需的電力,並且在多 Port 裝置的情況下,各個 Port 之間的電力分配和管理也符合規範要求。
宜特訊號測試實驗室透過符合 USB-IF 規範的測試儀器進行測試,並擷取過程中未通過的資訊,提供給客戶進行除錯(debug),幫助客戶最終取得相關證書。以下將分享兩個案例:
(一)案例一 : 合規測試規範變動導致測試誤判的問題排查
在產品測試過程中,可能因為合規測試規範(Compliance Test Specification,簡稱CTS)更動或是尚未定義,造成測試儀器誤判而未能通過測試。透過側錄的資訊 (Trace or Log) 檢查未通過的結果與 CTS 似乎有衝突,宜特訊號測試實驗室將此現象反應給儀器商進行討論,確認出真正的問題之外,亦會在每週和 USB-IF 協會的線上會議確認是否有類似問題已被提出工程變更請求(Engineering Change Request,簡稱ECR),未來是否有機會修正為工程變更通知 (Engineering Change Notice,簡稱ECN),並進而修訂CTS,減少客戶 debug 時間。
(二)案例二 : 負載測試中 Vbus 電壓過低問題的分析與解決
進行負載測試時 (Load Test),Vbus 過低且未在規範要求的時間內恢復到合適的電壓範圍,如圖一,若 Vbus 低於 4.75V (VSrcNew(min)) 且未能在 tSrcTransient 內拉回至 4.75V 以上。儀器就會判定產品未能通過負載測試,這種情況可能導致裝置無法正常工作。遇到這樣的情形,宜特訊號測試工程師會說明規範,讓客戶了解未通過的原因,協助客戶對症下藥,縮短 debug 時間。
當負載(load)高於或低於 60mA 時,Source 輸出電壓在應對負載瞬態變化時必須遵守以下規範(表一):
USB-IF 為了有效管理和追蹤 USB 產品設備,將審查所有提交的測試結果並提供正式的批准。OEM/ODM 廠商可將其 USB Type-C 產品提交至 USB-IF 授權的獨立測試實驗室 (Independent Test Labs,簡稱 ITLs) 進行正式測試。廠商需要先取得 Vendor ID(VID),VID 可以透過成為 USB-IF 會員或購買取得。有了 VID 後就能進入 USB-IF 網站中登錄產品,USB-IF 會分配給該產品一個 Test ID (TID) 識別碼,用於追蹤該產品的測試和認證記錄,接著就能開始進行 Conformity 測試。通過測試的產品會被公開登錄在 USB-IF 網頁上的 IEC 62680 Conformity 名單中,並收到來自 USB-IF 證明產品符合 IEC 62680 (USB) 規範的通知信 (圖三)。
Type-C 已成為全球共識,不只是「歐盟法規」。宜特科技已取得USB-IF最新的Power Delivery 3.1技術,並為USB Power Delivery(PD)正式認證測試實驗室(ITL),可協助廠商驗證上述13類產品的Type-C可充電無線裝置符合 IEC 62680規定,順利取得USB-IF Conformity to IEC 62680。如果廠商希望獲得 USB-IF Logo 認證,宜特也能提供完整的USB Compliance Test,確保產品具有更全面的保障。
此外,宜特亦可提供USB / DisplayPort / HDMI / VESA DisplayHDR 等多項標準測試及官方認證服務。針對各式各樣不同的客戶產品功能,宜特能客製化制定相關測試項目,並依循著使用者角度,設計出專業詳細的測試步驟,找出產品問題點,協助客戶解決棘手問題。
本文出自 www.istgroup.com
2025-08-29 12:07:58
本文與 冠軍磁磚 合作,泛科學企劃執行
夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)。
這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。
在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。
聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。
要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。
作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。
這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。
想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。
目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。
藻類、真菌還不夠?那就再「種」苔蘚。
西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。
這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。
這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。
不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?
如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」。
它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。
為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。
在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%。
屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C。
這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。
雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。
到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。
1. 水源熱泵:讓水域成為建築的低耗電恆溫空調
第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。
想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。
工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。
研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。
2. 動態遮陽外牆:讓建築自己追著太陽動
第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。
每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。
這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。
3. 電致變色智慧玻璃:光與熱量隨心控制
最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。
它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。
從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。
展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。
2025-08-27 17:44:46
有些鸚鵡會學其他鳥類鳴叫,經過反覆訓練,甚至會學人類說話。章老師居家附近就有人養了隻金剛鸚鵡,會說「你好。」說得十分清楚。章老師還見過一隻金剛鸚鵡,看到人就點著頭,用台語說:「吃飽了嗎?」十分有趣。
有時沒經過訓練,只因經常聽到一個聲音,就不經意地學會了。譬如從前隨時可以聽到小販的叫賣聲,各種小販出現的時間不同,最早出現的是賣豆腐的。早晨七時許,賣豆腐的小販挑著豆腐擔子來到我們村子,從村頭吆喝到村尾,有人養的一隻鸚鵡就學會了,不時說出賣豆腐的吆喝聲。
鸚鵡學人類說話,懂得意思嗎?答案是不懂。因此成語鸚鵡學舌,比喻人家怎麼説,就跟着怎麼説,是個具有貶意的成語。好了,讓我們試著造兩個句吧。
他這個人毫無主見,經常人云亦云,有如鸚鵡學舌。
這場演講,講者宛如鸚鵡學舌,一再重複他人的話。
那麼為什麼鸚鵡會學人類說話,是牠們特別聰明嗎?不見得。主要鸚鵡的發聲器官——鳴管較為發達,舌頭較厚,前端細長,轉動靈活,且舌頭到鳴管的角度,和人類舌頭到聲帶的角度相似,所以能發出一些較為複雜的聲音。
鸚鵡屬於鸚鵡目。鸚鵡目有410種,會學舌的並不多,我們常見的情侶鸚鵡(愛情鳥)就不會。一般而言,體型較大的鸚鵡,模仿、記憶力較強,學舌能力也較強,其中最會學舌的是非洲灰鸚鵡,據說可以學會2000個詞語!
中國四大小說之一的《紅樓夢》,書中林黛玉所養的一隻鸚鵡,會人模人樣的說話,如叫喚黛玉的丫環雪雁:「雪雁,快掀簾子,姑娘回來了。」牠還會模仿黛玉的聲調,誦唸黛玉作的〈葬花詞〉呢。
小說不足取信,正史上有關鸚鵡的記載應該沒有問題。唐貞觀五年(西元631年),林邑(今越南中部)獻給唐太宗一隻白鸚鵡(鳳頭鸚鵡),那隻白鸚鵡聰明伶俐,屢屢向唐太宗訴說:「冷啊,冷啊……」唐太宗心想,白鸚鵡是南方動物,受不了北方的嚴寒,就將白鸚鵡交還使者,送回本國去了。
白鸚鵡是一種大型鸚鵡,主要分佈澳洲和新幾內亞,最北分佈到菲律賓一帶,的確不習慣北方的氣候。林邑進貢的那隻白鸚鵡怎會屢屢向唐太宗訴說自己很冷?章老師想,大概是照顧牠的宮女,常說「冷啊,冷啊……」,被牠學會了。
除了鸚鵡會學舌,八哥也是一種很會學舌的鳥。記得章老師讀大學時,報上刊出一則有趣的新聞,有位開賭場的人養了隻八哥,鳥籠就掛在門口,牠常用台語說:「來賭博,來賭博……」。有次路過的警察聽到了,就進去看看,把聚賭的一夥人抓個正著。開賭場的人覺得這隻八哥吃裡扒外,就把牠廉價賣掉了。